Atomic Data =========== .. list-table:: :widths: 28 50 22 :header-rows: 1 * - Name - Description - Preview * - :ref:`Photon Emissivity Coefficients ` - Sampling and plotting PEC rates provided by OPEN-ADAS. - .. image:: ./atomic_data/D_alpha_PECs.png :height: 150px :width: 150px * - :ref:`Beam-Plasma Interaction Rates ` - Sampling and plotting various beam-plasma interaction rates provided by OPEN-ADAS. - .. image:: ./atomic_data/effective_cx_rates.png :height: 150px :width: 150px * - :ref:`Fractional Abundances ` - Sampling and plotting Neon fractional abundances with the ADAS subscription package. - .. image:: ./atomic_data/fractional_abundance.png :height: 150px :width: 150px * - :ref:`Radiated Powers ` - Sampling and plotting total and stage resolved radiated powers with the ADAS subscription package. - .. image:: ./atomic_data/stage_resolved_radiation.png :height: 150px :width: 150px Creating Plasmas ================ .. list-table:: :widths: 28 50 22 :header-rows: 1 * - Name - Description - Preview * - :ref:`Analytic Functions ` - Specifying plasma distributions with analytic functions. - .. image:: ./plasmas/analytic_plasma.png :height: 150px :width: 150px * - :ref:`Flux Function Plasmas ` - Loading the example EFIT equilibrium and making 1D flux functions. - .. image:: ./plasmas/equilibrium_surfaces.png :height: 150px :width: 150px * - :ref:`2D Mesh Plasmas ` - Specifying a plasma distribution with a 2D r-z triangular mesh. - .. image:: ./plasmas/mesh_plasma_column.png :height: 150px :width: 150px * - :ref:`Slab Plasma ` - Constructing a slab of plasma defined along +ve x. - .. image:: ./plasmas/slab_plasma.png :height: 150px :width: 150px * - :ref:`Beams into Plasmas ` - Specifying a mono-energetic neutral beam that interacts with a plasma. - .. image:: ./plasmas/beam_into_plasma.png :height: 150px :width: 150px Surface Radiation Loads ======================= .. list-table:: :widths: 28 50 22 :header-rows: 1 * - Name - Description - Preview * - :ref:`Defining A Radiation Function ` - Defining an example radiation function. - .. image:: ./radiation_loads/radiation_function.png :height: 150px :width: 150px * - :ref:`Defining A Wall From A 2D Polygon ` - A toroidal mesh representing the tokamak wall is made from a 2D polygon outline. - .. image:: ./radiation_loads/toroidal_wall.png :height: 150px :width: 150px * - :ref:`Symmetric Power Load Calculation ` - Calculating the power load by exploiting symmetry. We manually create an array of detectors for sampling. - .. image:: ./radiation_loads/symmetric_power_load.png :height: 150px :width: 150px * - `Mesh Observer `_ - Calculating powers on an arbitrary 3D surface (Raysect docs). - .. image:: https://raysect.github.io/documentation/_images/mesh_observers.jpg :height: 150px :width: 150px * - :ref:`AUG - SOLPS radiation load example ` - An older demonstration of the tutorials above using a SOLPS simulation and an AUG wall outline. - .. image:: ./radiation_loads/AUG_wall_outline.png :height: 150px :width: 150px Active Spectroscopy =================== .. list-table:: :widths: 28 50 22 :header-rows: 1 * - Name - Description - Preview * - :ref:`Charge Exchange Spectroscopy (CXS) ` - A simple CXS model for a beam into a plasma slab. - .. image:: ./active_spectroscopy/CXS_multi_sightlines.png :height: 150px :width: 150px * - :ref:`Beam Emission Spectroscopy ` - A simple Beam Emission Spectroscopy (BES) model for a beam into a plasma slab. - .. image:: ./active_spectroscopy/BES_spectrum_zoomed.png :height: 150px :width: 150px Passive Spectroscopy ==================== .. list-table:: :widths: 28 50 22 :header-rows: 1 * - Name - Description - Preview * - :ref:`Impact Excitation and Recombination ` - Modelling background lines due to electron impact excitation and recombination. - .. image:: ./passive_spectroscopy/BalmerSeries_camera.png :height: 150px :width: 150px * - :ref:`Multiplet Line Ratios ` - Including experimentally determined multiplet line ratios. - .. image:: ./passive_spectroscopy/multiplet_spectrum.png :height: 150px :width: 150px * - :ref:`Stark Broadened Lines ` - Specifying a Stark broadened lineshape instead of Doppler broadening. - .. image:: ./passive_spectroscopy/stark_line_zoomed.png :height: 150px :width: 150px * - :ref:`Zeeman Spectroscopy ` - Specifying a Zeeman triplet or multiplet line shapes. - .. image:: ./passive_spectroscopy/zeeman_spectrum_45deg.png :height: 150px :width: 150px Bolometry ========= .. list-table:: :widths: 28 50 22 :header-rows: 1 * - Name - Description - Preview * - :ref:`Camera From Primitives ` - Designing a simple bolometer camera using raysect primitives - .. image:: ./bolometry/camera_from_primitives.svg :height: 150px :width: 150px * - :ref:`Camera From Mesh and Coordinates ` - Designing a simple bolometer camera using a mesh file and vertex coordinates - .. image:: ./bolometry/camera_from_mesh_and_coordinates.svg :height: 150px :width: 150px * - :ref:`Observing a Radiation Function ` - Calculating the measured power and radiance on bolometer from a 3D radiation function - .. image:: ./bolometry/bolometer_and_radiation_function.png :height: 150px :width: 150px * - :ref:`Calculating the Etendue ` - Calculating the etendue of a bolometer detector - .. image:: ./bolometry/bolometer_etendues.svg :height: 150px :width: 150px * - :ref:`Geometry Matrix Calculation Using Voxels ` - Calculating the geometry matrix for a bolometer system using the voxel framework - .. image:: ./bolometry/bolometer_voxel_sensitivities.png :height: 150px :width: 150px * - :ref:`Bolometer Inversions Using Voxels ` - Performing inversions using geometry matrices and the voxel framework - .. image:: ./bolometry/inversion_with_voxels_profile.png :height: 150px :width: 150px * - :ref:`Geometry Matrix Calculation Using Ray Transfer Objects ` - Calculating the geometry matrix for a bolometer system using ray transfer objects - .. image:: ./bolometry/bolometer_raytransfer_sensitivities.png :height: 150px :width: 150px * - :ref:`Bolometer Inversions Using Ray Transfer Objects ` - Performing inversions using geometry matrices from a ray transfer object - .. image:: ./bolometry/inversion_with_raytransfer_profile.png :height: 150px :width: 150px Geometry Matrices ================= .. list-table:: :widths: 28 50 22 :header-rows: 1 * - Name - Description - Preview * - :ref:`Rectangular regular grid ` - Calculating the geometry matrix for a rectangular emitter defined on a regular grid. - .. image:: ./ray_transfer/ray_transfer_box_demo.png :height: 150px :width: 150px * - :ref:`Cylindrical regular grid ` - Calculating the geometry matrix for a cylindrical emitter defined on a regular grid. - .. image:: ./ray_transfer/ray_transfer_cylinder_demo.gif :height: 150px :width: 150px * - :ref:`Axisymmetrical (toroidal) regular grid ` - Calculating the geometry matrix for an axisymmetrical toroidal emitter defined on a regular grid. Applying a mask to filter out extra grid cells. - .. image:: ./ray_transfer/ray_transfer_mask_demo.gif :height: 150px :width: 150px * - :ref:`Axisymmetrical (toroidal) regular grid with custom mapping of light sources ` - Mapping multiple grid cells into a single light source. - .. image:: ./ray_transfer/ray_transfer_map_demo.gif :height: 150px :width: 150px Code examples gallery ===================== .. note:: These code examples are included for historical reasons. They may require specific (sometimes older) versions of Cherab's submodules to work. Many also require access to specific machine data. .. list-table:: :widths: 28 50 22 :header-rows: 1 * - Name - Description - Preview * - :ref:`CXRS Quickstart ` - Commented demo file about how to use Cherab for JET CX simulations. - .. image:: ./jet_cxrs/JET_CXRS_d5lines.png :height: 150px :width: 150px * - :ref:`#76666 sample analysis ` - Demo CX analysis for pulse 76666 at t=61s - * - :ref:`MAST-U filtered cameras ` - Example of using SOLPS simulation and ADAS rates to model filtered cameras. - .. image:: ./line_emission/mastu_bulletb_midplane_dgamma.png :height: 150px :width: 150px * - :ref:`MAST-U SOLPS plasma ` - Example of loading a plasma from a SOLPS simulation and inspecting the various plasma species parameters. - .. image:: ./solps/species_narrow.png :height: 150px :width: 150px * - :ref:`Custom Emission Model ` - Example of making a custom emitter class in Cherab. D-alpha impact excitation is used for the example. - .. image:: ./line_emission/mastu_bulletb_midplane_dalpha.png :height: 150px :width: 150px * - :ref:`Measuring line of sight spectra ` - Basic balmer series measurement in the MAST-U divertor with an optical fibre. Localisation of the plasma emission is examined by plotting profiles of parameters such as density and temperature along the ray trajectory. - .. image:: ./line_emission/balmer_series_spectra.png :height: 150px :width: 150px